Contents lists available at ScienceDirect

Tetrahedron Letters

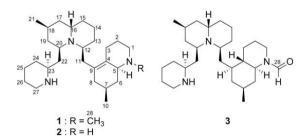
journal homepage: www.elsevier.com/locate/tetlet

Lycochinines A–C, novel C₂₇N₃ alkaloids from Lycopodium chinense

Yusuke Hirasawa, Tomoyuki Tanaka, Koichiro Koyama, Hiroshi Morita*

Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan

A R T I C L E I N F O


Article history: Received 1 April 2009 Revised 16 May 2009 Accepted 21 May 2009 Available online 25 May 2009

ABSTRACT

Three novel $C_{27}N_3$ -type *Lycopodium* alkaloids, lycochinines A–C (**1–3**) consisting of an octahydroquinoline or a decahydroquinoline, a quinolizidine, and a piperidine, were isolated from the club moss *Lycopodium chinense*. The relative stereochemistry of **1–3** was determined by a combination of NOESY correlations and chemical transformations.

© 2009 Elsevier Ltd. All rights reserved.

Lycopodium alkaloids¹ with unique heterocyclic frameworks of $C_{11}N$, $C_{16}N$, $C_{16}N_2$, and $C_{27}N_3$ types have attracted great interest from biogenetic^{1,2} and biological³ points of view. A common feature in all *Lycopodium* alkaloids is a polycyclic carbon skeleton with varying levels of oxidation. These unique skeletons have also been challenging targets for total synthesis.⁴ Among them, huperzine A is a highly specific and potent inhibitor of acetylcholinesterase (AChE).³ Recently, we isolated new types of polycyclic alkaloids from various *Lycopodium* species.^{5–11} Our interest has been focused on isolation of structurally interesting alkaloids and biosynthetic intermediates to clarify the biogenetic pathway. Further investigation on extracts of *L. chinense* H. Christ (Lycopodiaceae) resulted in the isolation of novel $C_{27}N_3$ alkaloids, lycochinines A–C (1–3). This Letter describes the isolation and structure elucidation of 1–3.

The club moss *L. chinense* collected in Hokkaido was extracted with MeOH, and the extract was partitioned between EtOAc and 3% aqueous tartaric acid. Water-soluble materials, adjusted to pH 9 with saturated Na₂CO₃ aq, were extracted with CHCl₃. The CHCl₃-soluble materials were subjected to an LH-20 column (CHCl₃/MeOH, 1:1), followed by an amino silica gel column (hexane/EtOAc \rightarrow CHCl₃/MeOH) and then a silica gel column (CHCl₃/

MeOH/TFA) to afford lycochinines A (**1**, 0.0002%), B (**2**, 0.0005%), and C (**3**, 0.0005%) together with the known $C_{22}N_2$ -type alkaloids, senepodines A and E.^{12–14}

Lycochinine A (**1**),¹⁵ colorless amorphous solid, $[\alpha]_{D}^{23} - 15$ (*c* 1.0, MeOH), showed a molecular formula, C₂₈H₄₉N₃, which was determined by HRESITOFMS [*m*/*z* 428.3993 (M+H)⁺, ⊿ −1.2 mmu], indicating 6 degrees of unsaturation. IR absorption band was characteristic of amino (3400 cm⁻¹) group. ¹H and ¹³C NMR data (Table 1) suggested the presence of 16 sp^3 methylenes, seven sp^3 methines, three methyls, and two sp^2 quaternary carbons. Among them, two sp³ methylenes (δ_C 57.2, δ_H 3.09, 3.45; δ_C 46.2, δ_H 2.95, 3.34) and five sp³ methines (δ_{C} 66.7, δ_{H} 3.67; δ_{C} 55.0, δ_{H} 3.62; $\delta_{\rm C}$ 54.2, $\delta_{\rm H}$ 3.72; $\delta_{\rm C}$ 53.3, $\delta_{\rm H}$ 3.79; $\delta_{\rm C}$ 55.4, $\delta_{\rm H}$ 3.17), and one methyl (δ_{C} 41.4, δ_{H} 2.81) were attached to the nitrogen atom. Since only one of six unsaturations was accounted for, 1 was inferred to possess 5 rings. Partial structures a (C-1-C-3), b (C-5-C-8 and C-10), and c (C-11-C-27) were deduced from detailed analyses of the 2D NMR data (¹H-¹H COSY, HOHAHA, HMQC, and HMQC-TOC-SY spectra) of 1 (Fig. 1). The connection among partial structures a, b, c, and the tetra-substituted olefinic carbons, and construction of an N-methyloctahydro-quinoline ring (C-1-C-9 and N-1) were deduced from the HMBC correlations of H₂-8 to C-4, C-9, and C-11, H-3a to C-4, and H₃-28 to C-1 and C-5. The presence of a piperidine ring (C-23-C-27, and N-3) was elucidated from the HMBC correlation of H-27b to C-23. HMBC correlations from H-12 to C-16 and H-16 to C-20 in partial structure **c** established the connection among C-12, C-16, and C-20 through a nitrogen atom, constructing the quinolizidine ring (C-12-C-20 and N-2). Thus, the gross structure of lycochinine A was assigned as 1, consisting of an octahydroquinoline, a quinolizidine, and a piperidine with three methyls at C-7, C-18, and N-1.

The relative stereochemistry in **1** was deduced from NOESY data and ${}^{3}J$ coupling constants (Fig. 2). In the octahydroquinoline moiety (C-1–C-9 and N-1), five NOESY correlations (H–1a/H–3a, H–1a/H–5, H–3a/H–5, H–5/H–7, and H–6a/H–8a) were observed. These correlations indicated that each six-membered ring took a pseudo-chair form and the methyl group at C-7 was oriented equatorially. Three

^{*} Corresponding author. Tel./fax: +81 3 5498 5778.

E-mail address: moritah@hoshi.ac.jp (H. Morita).

^{0040-4039/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.05.072

Table 1

¹H and ¹³C NMR data of lycochinines A-C (1-3) in CD₃OD

	1 ^a		2 ^b		3 ^c	
1a	3.09 (1H, dd, 13.2, 12.8)	57.2	3.11 (1H, ddd,13.9, 12.9, 2.9)	45.4	2.52 (1H, ddd, 12.9, 12.9, 2.8)	43.1
1b	3.45 (1H, br d, 12.8)		3.39 (1H, br d, 13.9)		4.52 (1H, br d, 12.9)	
2a	1.69 (1H, m)	24.5	1.64 (1H, m)		1.42 (1H, m)	26.8
2b	2.00 (1H, m)		2.01 (1H, m)	24.2	1.78 (1H, m)	
3a	2.03 (1H, m)	27.5	2.07 (1H, m)		1.14 (1H, m)	30.6
3b	2.94 (1H, m)		2.92 (1H, br d, 13.7)	27.0	2.24 (1H, br d, 11.3)	
4		128.2 ^d			0.94 (1H, dddd, 10.6, 10.6, 10.6, 3.1)	49.5
5	3.67 (1H, m)	66.7	3.82 (1H, m)	128.2 ^d	3.01 (1H, m)	63.8
6a	1.26 (1H, ddd, 11.6, 11.6, 11.6)	36.1	1.26 (1H, m)	57.7	1.34 (1H, ddd, 11.8, 11.8, 11.8)	38.4
6b	2.31 (1H, m)		2.11 (1H, m)	37.0	2.02 (1H, br d, 11.8)	
7	1.70 (1H, m)	29.0	1.75 (1H, m)		1.53 (1H, m)	32.7
8a	1.93 (1H, m)	39.8	1.95 (1H, m)	28.5	0.72 (1H, ddd, 12.3, 12.3, 12.3)	42.4
8b	2.02 (1H, m)		2.03 (1H, m)	39.7	1.82 (1H, m)	
9		135.9 ^d			1.28 (1H, dddd, 10.7, 10.7, 10.6, 3.0)	40.2
10	1.06 (3H, d, 6.6)	21.7	1.04 (3H, d, 6.5)	134.5 ^d	1.01 (3H, d, 6.6)	22.9
11a	2.36 (1H, br d, 12.6)	35.3	2.32 (1H, m)	21.6	1.07 (1H, dd, 13.8, 10.7)	35.3
11b	2.97 (1H, br t, 12.6)		3.08 (1H, m)	34.3	2.07 (1H, ddd, 13.8, 7.5, 3.0)	
12	3.62 (1H, m)	55.0	3.74 (1H, m)		3.22 (1H, m)	51.3
13a	1.41 (1H, m)	21.8 ^e	1.47 (1H, m)	55.0	1.08 (1H, m)	22.7
13b	1.81 (1H, m)		1.83 (1H, m)	25.6 ^e	1.78 (1H, m)	
14a	1.74 (1H, m)	19.2	1.74 (1H, m)		1.64 (1H, br d, 11.8)	21.3
14b	1.76 (1H, m)		1.80 (1H, m)	18.9	1.77 (1H, m)	
15a	1.53 (1H, m)	25.4	1.57 (1H, m)		1.05 (1H, m)	24.7
15b	2.06 (1H, m)		2.11 (1H, m)	25.4	1.95 (1H, dddd, 12.8, 12.8, 12.8, 4.6)	
16	3.72 (1H, m)	54.2	3.82 (1H, m)		3.16 (1H, br d, 12.8)	51.4
17a	1.48 (1H, m)	37.6	1.56 (1H, m)	57.7	1.26 (1H, ddd, 12.7, 12.7, 5.1)	40.9
17b	1.81 (1H, m)		1.79 (1H, m)	37.8	1.47 (1H, dd, 13.4, 3.3)	
18	1.93 (1H, m)	25.1	1.93 (1H, m)		1.69 (1H, m)	26.4
19a	1.16 (1H, ddd, 13.0, 12.2, 12.2)	39.3	1.20 (1H, m)	24.8	0.84 (1H, ddd, 12.0, 12.0, 12.0)	43.5
19b	2.08 (1H, br d, 13.0)		2.15 (1H, m)	39.2	1.77 (1H, m)	
20	3.79 (1H, br t, 9.6)	53.3	3.90 (1H, m)		3.07 (1H, m)	49.9
21	0.98 (3H, d, 6.6)	21.9	0.97 (3H, d, 6.4)	53.3	0.86 (3H, d, 6.4)	22.9
22a	1.63 (1H, m)	37.6	1.68 (1H, m)	21.8	1.16 (1H, ddd, 14.0, 8.6, 5.4)	43.2
22b	2.23 (1H, ddd, 13.5, 9.9, 4.0)		2.32 (1H, m)	37.0	1.73 (1H, m)	
23	3.17 (1H, dd, 9.9, 9.6)	55.4	3.24 (1H, m)		2.56 (1H, m)	56.3
24a	1.52 (1H, m)	31.9	1.57 (1H, m)	54.8	1.05 (1H, m)	33.2
24b	1.93 (1H, m)		1.93 (1H, m)	31.7	1.76 (1H, m)	
25a	1.64 (1H, m)	24.0	1.62 (1H, m)		1.40 (1H, m)	25.5
25b	1.85 (1H, m)		1.89 (1H, m)	23.5	1.80 (1H, m)	
26a	1.63 (1H, m)	23.6	1.64 (1H, m)		1.44 (1H, m)	26.8
26b	1.88 (1H, m)		1.87 (1H, m)	23.7	1.62 (1H, br d, 12.6)	
27a	2.95 (1H, ddd, 12.6, 12.6, 2.4)	46.2	2.97 (1H, m)		2.62 (1H, ddd, 12.1, 12.1, 2.4)	47.7
27b	3.34 (1H, m)		3.37 (1H, m)	46.1	3.02 (1H, m)	
28	2.81 (3H, s)	41.4			8.13 (1H, s)	160.8

^a TFA salt recorded at 323 K.

^b TFA salt recorded at 303 K.

^c Free base recorded at 293 K.

^d Assigned by HMBC.

^e Assigned by HSQC.

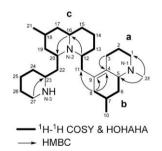


Figure 1. Selected 2D NMR correlations for lycochinine A (1).

NOESY correlations (H-15b/H-18 and H-20, and H-18/H-20) were observed in the quinolizidine moiety (C-12–C-20 and N-2). These correlations supported the cis-bis-chair conformation of the quinolizidine ring and both C-21 and C-22 were oriented equatorially against piperidine ring (C-16–C-20 and N-2). Therefore, the two stereochemistries, (5*S*^{*}, 7*S*^{*}, 12*S*^{*}, 16*S*^{*}, 18*S*^{*}, 20*R*^{*}) and (5*R*^{*}, 7*R*^{*},

12*S*^{*}, 16*S*^{*}, 18*S*^{*}, 20*R*^{*}) were proposed for the relationship between the octahydroquinoline and the quinolizidine rings. Of the two relative stereochemistries, only the former was satisfied by the NOESY correlations of H-8a/H-12, H-8b/H-11a, H-11a/H-12, and H-11b/H-16. The large vicinal coupling constant (12.6 Hz) supported the antiperiplanar relationship between H-12 and H-11b. Furthermore, the relative stereochemistry between the quinolizidine and piperidine rings could be deduced by NOESY correlations for H-12/H-22b, H-19a/H-22a, H-19b/H-23, H-20/H-22b, H-22a/H-23, H-22a/H-24b, and H-23/H-27, as shown in Figure 2. The large coupling constants between H-20 and H-22a (9.6 Hz), and between H-23 and H-24a (9.6 Hz) also supported the rigid solution conformation of **1** and antiperiplanar relationship, respectively. Thus, the structure of lycochinine A (**1**) was assigned as shown.

Lycochinine B (**2**),¹⁶ colorless amorphous solid, $[\alpha]_D^{23} - 5$ (*c* 1.0, MeOH), showed molecular formula, $C_{27}H_{47}N_3$, which was determined by HRESITOFMS [*m*/*z* 414.3843 (M+H)⁺, Δ -0.5 mmu], less than that of **1** by a CH₂ unit. An IR absorption band (3400 cm⁻¹) was characteristic of amino group. ¹H and ¹³C NMR data of **2** (Table 1) were analogous to those of **1** without the *N*(1)-Me. The

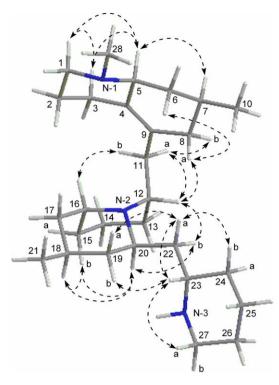


Figure 2. Selected NOESY correlations for lycochinine A (1).

gross structure of **2** was elucidated by 2D NMR (${}^{1}H{}^{-1}H$ COSY, HOHAHA, HMQC, and HMBC) data to be the N-1 demethyl form of **1**. Treatment of both **1** and **2** with HCHO and HCOOH afforded an *N*-methyl derivative of **1**, whose spectroscopic data and specific rotation were identical with each other and confirmed the relative configuration of **2**.

Lycochinine C (**3**)¹⁷ showed the pseudomolecular ion peak at m/z 444 (M+H)⁺ in the ESIMS, and the molecular formula, C₂₈H₄₉N₃O, was established by HRESIMS [m/z 444.3940 (M+H)⁺ Δ –0.8 mmu], larger than **2** by a CH₂O unit. ¹H and ¹³C NMR spectra of **3** were analogous to those of **2**, although an *N*-formyl group ($\delta_{\rm C}$ 160.8) and two sp³ methines ($\delta_{\rm C}$ 40.2 and 49.5) in place of a tetrasubstituted olefin carbons ($\delta_{\rm C}$ 128.2 and 134.5) of **2** were observed for **3**.

The ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY and HOHAHA spectra revealed connectivities as shown by the bold line. (Fig. 3) Each connection through a nitrogen atom was elucidated by HMBC correlation of H-1 to C-5, H-12 to C-16, H-16 to C-20, H-27 to H-23, and H-28 to C-1. Thus, the gross structure of lycochinine C was assigned as **3**, consisting of a decahydroquinoline, a quinolizidine, and a piperidine.

The relative configuration of **3** was deduced from NOESY correlations (Fig. 4). The presence of nine NOESY correlations (H-12/H-22b, H-15/H-18, H-15/H-20, H-18/H-20, H-19a/H-22a, H-19b/H-23, H-20/H-22b, H-22a/H-23, H-22a/H-24b, and H-23/H-27a) between the quinolizidine and the piperidine rings was the same as

Figure 3. Selected 2D NMR correlations for lycochinine C (3).

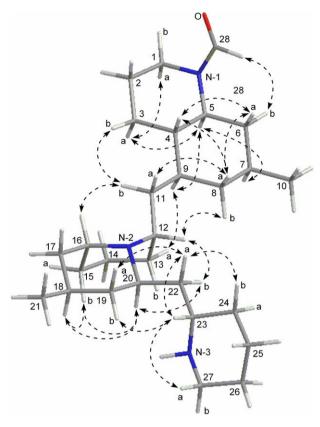


Figure 4. Selected NOESY correlations for lycochinine C (3).

those in **1**. In the decahydroquinoline ring (C-1–C-9 and N-1), eight NOESY correlations (H-1a/H-3a, H-1a/H-5, H-3a/H-5, H-4/H-6a, H-4/H-8a, H-5/H-7, H-5/H-9, and H-6a/H-8a) were observed. These correlations indicated that the junction of the decahydroquinoline ring was trans and a methyl group at C-7 was oriented equatorially. The conformation between the quinolizidine ring and the decahydroquinoline ring through a C-11 methylene was deduced from the NOESY cross-peaks of H-3/H-11b, H-8a/H-11a, H-8b/H-12, H-9/H-13a, and H-11b/H-16. The large coupling constants between H-9 and H-11a (10.7 Hz), and between H-11b and H-12 (7.5 Hz) also supported the rigid conformation around the C-11 methylene. Thus, the relative stereochemistry of lycochinine C (**3**) was assigned as shown.

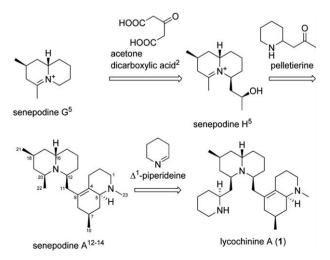


Figure 5. Plausible biogenetic pathway for lycochinine A (1).

Lycochinines A–C (**1–3**) are a new class of $C_{27}N_3$ Lycopodium alkaloids, consisting of an octahydroquinoline or a decahydroquinoline, a quinolizidine ring, and a piperidine ring. A plausible biogenetic pathway for lycochinine A (**1**) is proposed in Figure 5. Lycochinines A–C (**1–3**) might be generated from a piperidine unit and senepodine A^{12,13} derived from pelletierine via senepodines G⁵ and H⁵.

Lycochinine C (**3**) showed moderate cytotoxicity against human blood premyelocytic leukemia (HL-60, 46% inhibition at 100 μ M), whereas lycochinines A (**1**) and B (**2**) did not show.

Acknowledgment

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References and notes

- For reviews of the Lycopodium alkaloids, see: (a) Kobayashi, J.; Morita, H. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 2004; Vol. 61, p 1; (b) Ayer, W. A.; Trifonov, L. S. In The Alkaloids; Cordell, G. A., Brossi, A., Eds.; Academic Press: New York, 1994; Vol. 45, p 233; (c) Ayer, W. A. Nat. Prod. Rep. 1991, 8, 455; (d) MacLean, D. B. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, p 241; (e) MacLean, D. B.. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1973; Vol. 14, p 348; (f) MacLean, D. B. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1968; Vol. 10, p 305.
- (a) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1996, 118, 1799–1800; (b) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1993, 115, 3020–3021.
- Liu, J. S.; Zhu, Y. L.; Yu, C. M.; Zhou, Y. Z.; Han, Y. Y.; Wu, F. W.; Qi, B. F. Can. J. Chem. 1986, 64, 837–839.
- (a) Yen, C.-F.; Liao, C.-C. Angew. Chem., Int. Ed. 2002, 41, 4090–4093; (b) Cassayre, J.; Gagosz, F.; Zard, S. Z. Angew. Chem., Int. Ed. 2002, 41, 1783–1785; (c) Sha, C.-K; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. 1999, 121, 9875–9876; (d) Williams, J. P.; St. Laurent, D. R.; Friedrich, D.; Pinard, E.; Roden, B. A.; Paquette, L. A. J. Am. Chem. Soc. 1994, 116, 4689–4696; (e) Hirst, G. C.; Johnson, T. O.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 2992–2993. and references cited therein.

- Morita, H.; Hirasawa, Y.; Shinzato, T.; Kobayashi, J. Tetrahedron 2004, 60, 7015– 7023.
- Koyama, K.; Morita, H.; Hirasawa, Y.; Yoshinaga, M.; Hoshino, T.; Obara, Y.; Nakahata, N.; Kobayashi, J. Tetrahedron 2005, 61, 3681–3690.
- 7. Hirasawa, Y.; Morita, H.; Kobayashi, J. Org. Lett. 2006, 8, 123-126.
- Hirasawa, Y.; Kobayashi, J.; Obara, Y.; Nakahata, N.; Kawahara, N.; Goda, Y.; Morita, H. *Heterocycles* **2006**, 68, 2357–2364.
 Choo, C.; Hirasawa, Y.; Karimata, C.; Koyama, K.; Sekiguchi, M.; Kobayashi, J.;
- Choo, C.; Hirasawa, Y.; Karimata, C.; Koyama, K.; Sekiguchi, M.; Kobayashi, J.; Morita, H. Bioorg. Med. Chem. 2007, 15, 1703–1707.
 Ulizera K. Korker, K. Konschell, M. Konschen, M. Code, Y.; China, M.; Marina, M.; Marina, M.; Code, Y.; China, M.; Code, Y.; China, M.; Marina, M.; Code, Y.; China, M.; China, M.; Code, Y.; China, M.; China
- Hirasawa, Y.; Kato, E.; Kobayashi, J.; Kawahara, N.; Goda, Y.; Shiro, M.; Morita, H. Bioorg. Med. Chem. 2008, 16, 6167–6171.
- 11. Hirasawa, Y.; Tanaka, T.; Kobayashi, J.; Kawahara, N.; Goda, Y.; Morita, H. *Chem. Pharm. Bull.* **2008**, *56*, 1473–1476.
- 12. Morita, H.; Hirasawa, Y.; Yoshida, N.; Kobayashi, J. *Tetrahedron Lett.* **2001**, *42*, 4199–4201.
- 13. Hirasawa, Y.; Morita, H.; Kobayashi, J. Tetrahedron 2003, 59, 3567-3573
- 14. Senepodine A TFA salt: ¹H NMŘ (CD₃OD) δ 3.20 (1H, ddd, 12.7, 12.7, 2.6, H-1), 3.54 (1H, br d, 12.7, H-1), 1.71 (1H, m, H-2), 2.06 (1H, m, H-2), 2.06 (1H, m, H-3), 2.97 (1H, br d, 14.8, H-3), 3.80 (1H, m, H-5), 1.30 (1H, ddd, 12.4, 12.4, 12.4, 14.4, H-6), 2.35 (1H, m, H-6), 1.73 (1H, m, H-7), 1.93 (1H, m, H-8), 2.02 (1H, m, H-8), 1.07 (3H, d, 6.5, H-10), 2.28 (1H, br d, 12.2, H-11), 3.28 (1H, dd, 12.4, 12.2, H-11), 3.82 (1H, m, H-12), 1.59 (1H, m, H-13), 1.82 (1H, m, H-13), 1.74 (1H, m, H-14), 1.78 (1H, m, H-14), 1.62 (1H, m, H-15), 2.17 (1H, m, H-15), 3.89 (1H, br d, 13.1, H-16), 1.56 (1H, m, H-17), 1.80 (1H, m, H-17), 1.99 (1H, m, H-18), 1.35 (1H, m, H-19), 1.97 (1H, m, H-19), 3.95 (1H, m, H-20), 0.96 (3H, d, 6.2, H-21), 1.39 (3H, d, 6.2, H-22), 2.90 (3H, s, H-23); ¹³C NMR (CD₃OD) δ 57.0 (C-1), 24.6 (C-2), 27.3 (C-3), 128.5 (C-4), 66.6 (C-5), 35.7 (C-6), 28.9 (C-7), 39.4 (C-8), 135.4 (C-9), 21.6 (C-10), 33.8 (C-11), 55.9 (C-12), 19.5 (C-13), 18.3 (C-14), 24.5 (C-15, 55.4 (C-16), 38.1 (C-17), 25.0 (C-18, 42.0 (C-19), 53.4 (C-20), 21.7 (C-21), 18.0 (C-22), 41.3 (C-23).
- 15. Lycochinine A (1): colorless amorphous solid, $[\alpha]_{D}^{23} 15$ (*c* 1.0, MeOH); IR (KBr) v_{max} 3400, 2920, 1450, and 1130 cm⁻¹; ¹H and ¹³C NMR (Table 1); ESIMS (pos.) m/z 428 (M+H)⁺; HRESITOFMS m/z 428.3993 (M+H)⁺, calcd for C₂₈H₅₀N₃ 428.4005.
- 16. Lycochinine B (**2**): colorless amorphous solid; $[\alpha]_D^{23} 5$ (*c* 1.0, MeOH); IR (KBr) v_{max} 3400, 2920, and 1450, and 1130 cm⁻¹; ¹H and ¹³C NMR (Table 1); ESIMS (pos.) *m/z* 414 (M+H); HRESITOFMS *m/z* 414.3843 (M+H)⁺, calcd for C₂₇H₄₈N₃ 414.3848.
- 17. Lycochinine C (**3**): colorless amorphous solid; $[\alpha]_D^{23}$ +62 (*c* 1.0, MeOH); IR (KBr) v_{max} 3430, 2930, 2860, 1660, and 1440 cm⁻¹; ¹H and ¹³C NMR (Table 1); ESIMS (pos.) *m*/*z* 444 (M+H)⁺; HRESITOFMS *m*/*z* 444.3940 (M+H)⁺, calcd for C₂₈H₅₀N₃O 444.3948.